

Roy F. Weston, Inc.
Federal Programs Division
Suite 201
1090 King Georges Post Road
Edison, New Jersey 08837-3703
732-225-6116 • Fax 732-225-7037

SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM EPA CONTRACT 68-W5-0019

4 May 1999

Mr. Joseph Cosentino, On-Scene Coordinator U.S. Environmental Protection Agency Removal Action Branch 2890 Woodbridge Avenue Edison, N.J. 08837

EPA CONTRACT NO: 68-W5-0019

TDD NO: 02-98-09-0023

DOCUMENT CONTROL NO: START-02-F-03459

SUBJECT: BAYONNE BARREL AND DRUM - REVISED REDUCED DATA REPORT

Dear Mr. Cosentino:

Enclosed please find the Revised Reduced Data Report summarizing START's groundwater sampling event at the Bayonne Barrel and Drum Site in Newark, New Jersey, from November 30 - December 2, 1998. Historical groundwater sampling data is included for comparitive purposes. Also included in this package are the Site Location Maps you requested of the Bayonne Barrel & Drum Site and the Newark Multiplex Cinema.

If you have any questions, do not hesitate to contact me at (732) 225-6116.

Very truly yours, Roy F. Weston, Inc.

John F. Brennan

TDD File

CC:

372182

START Sampling Summary

START was tasked by the United States Environmental Protection Agency to sample the eleven active* monitoring wells at the Bayonne Barrel & Drum Site. START conducted this sampling between November 30 - December 2, 1998. START sampled the monitoring wells for the following parameters:

TAL Metals (23 metals), TCL Organics (Volatile Organic Compounds, Semi-Volatile Organic Compounds, Pesticides, PCBs, and specifically requested Wet Chemistry Methods which included Ammonia, Color, Fluoride, Hardness, Nitrate, Nitrite, Odor, Oil & Grease, Total Dissolved Solids (TDS), and Total Petroleum Hydrocarbons (TPH)

*START was unable to sample monitoring well BBD-C2 due to the fact that the inner well casing had collapsed.

Historical Sampling Summary

Historical sampling data reviewed by START indicates that there has been several monitoring well sampling events conducted at the Bayonne Barrel & Drum Site. Historical data obtained by START dates as far back as 1986. There is no record of START or TAT ever sampling the monitoring wells prior to November 1998.

On January 6, 1986, Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, BBD-C4, and BBD-C5. The sampling was conducted on behalf of Scheider & Werner, P.A. (Newark, N.J.) and a report was issued on April 18, 1986, updated July, 1986. The monitoring wells were sampled for the following parameters:

BBD-C1, BBD-C2, BBD-C3, BBD-C5: BBD-C4:

PCBs, TPH, Volatile Organic Compounds
129 Priority Pollutants**

**This includes PP+40 (Volatile Organic Compounds (VO+15) and Semi-Volatile Organic Compounds (BNA+25), PP Metals (14 metals), Phenols, and Cyanides.

On May 27, 1986, Louis Berger and Associates, Inc., examined monitoring wells LB-MW1, LB-MW2, and LB-MW3. The sampling was conducted on behalf of the New Jersey Turnpike Authority (New Brunswick, N.J.) and a final report was issued in December, 1986. The monitoring wells were sampled for the following parameters:

LB-MW1, LB-MW2, LB-MW3:

PP+40 (Volatile Organic Compounds (VO+15) and Semi-Volatile Organic Compounds (BNA + 25), PP Metals (14 metals), PP Pesticides, Phenols, Cyanides, and PCBs

On June 21, 1988, Wehran Engineers & Scientists examined monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05. The sampling was conducted on behalf of National Amusements, Inc., (Dedham, Massachusetts) and a report was issued in October, 1988. It is

START's understanding that the monitoring wells examined by Wehran Engineers & Scientists are located off-site at the current Newark Multiplex Cinema. The monitoring wells were sampled for the following parameters:

MW-01, MW-02, MW-03, MW-04, MW-05:

Volatile Organic Compounds, Semi-Volatile Organic Compounds, Pesticides, Herbicides, PCBs, TPH, Phenols, Cyanide, PP Metals (14 metals), and specifically requested Wet Chemistry Methods which included Ammonia, BOD, COD, Chloride, Total Coliforms, Conductivity, TDS, MBAS, Nitrate-Nitrogen, Odor, Oil & Grease, and Sulfates

BAYONNE BARREL & DRUM SITE NEWARK, NEW JERSEY

REDUCED DATA TABLES START DATA NOVEMBER 30 - DECEMBER 2, 1998

TABLE 1 Bayonne Barrel & Drum Site Volatile Organic Compounds

Monitoring Well ID		2	LB-MW1	2614909-5	BBD-C3	BBD-C5	WELL A	WELL B
Sample Date			12/02/98	12/02/98	12/01/98	12/02/98	11/30/98	11/30/98
	MDL	NJGWQC					1	
Acetone	. 10	700	Ü	UĴ	UJ	9.1	53 J	LUJ
Bromodichloromethane	10	0.3*	Ü	U	U	6 J	U	Ü
Benzene	10	0.2*	7 J	9 J	4 J	26	16	9.J
4-Methyl-2-Pentanone	10	400	U	U	U	ŭ	120 J	10
Chlorobenzene	10	4*	Ú	2.J	Ü	38	U	l ŭ
Ethylbenzene	10	700	68	7.J	Ü	6J	21	11
Styrene	10	100	U	1 0		11	Ü	
Total Xylenes	10	40	25	19	1 J	44	39	Ü

Volatile Organic compound contamination data illustrated in the above table was limited to data that was equal to or exceeded the Method Detection Limit (MDL), except where the MDL exceeded the NJGWQC.

NOTES

*MDL exceeds NJGWQC

**NJGWQC (cis isomer - 10 ug/L; trans isomer - 100 ug/L)

All data reported in micrograms per liter (ug/L)

Well-B is the duplicate sample of LB-MW2. LB-MW2 exhibited no signs of volatile organic contamination Bold denotes data that exceeds NJGWQC

MDL - Method Detection Limit

U - Non-detected compound.

B - Compound detected in the associated Method Blank.

J - Estimated value.

JN - Presumptive evidence of a compound at an estimated value.

R - Rejected compound.

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

TABLE 2 Bayonne Barrel & Drum Site Semi-Volatile Organic Compounds

Sample ID			2614904	BBD-C1	BBD-C3	BBD-C5	LB-MW1	WELL A
Sample Date			12/02/98	12/02/98	12/01/98	12/02/98	12/02/98	11/30/98
•	MDL	NJGWQC					1	
Phenol	10	4000	U	U	U	U	U	940 **
4-Methylphenol	10	None Given	U	· U	U	U	U	1.0000 **
2,4-Dimethylphenol	10	100	U	U	13	יטי	U	15000 ***
Naphthalene	10	None Given	25	U	U	17	3900 **	38
2-Methylnaphthalene	10	None Given	33	U	U	15	850 **	U
Acenaphthene	10	400	2 J	U	U	2.J	53	1·J
Dibenzofuran	10	None Given	U	U	U	U	11	U
Fluorene	10	300	U	U	U	U	64	U
Phenanthrene	10	NA	Ü	Ü	U	2 J	73 **	U
Anthracene	10	2000	U	U	U	U	11	U
bis(2-Ethylhexyl)phthalate	10	3*	U	1 J	Ú	29	U	U

**- DF=50

Semi-Volatile Organic compound contamination data illustrated in the above table was limited to data that was equal to or exceeded the Method Detection Limit (MDL), except where the MDL exceeded the NJGWQC.

NOTES

* MDL exceeds NJGWQC All data reported in micrograms per liter (ug/L) Bold denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method Detection Limit

- U Non-detected compound.
- B Compound detected in the associated Method Blank.
- J Estimated value.
- JN Presumptive evidence of a compound at an estimated value.
- R Rejected compound.
- ND Not Detected
- NA Not Available For This Constituent As Per NJGWQC

TABLE 3
Bayonne Barrel & Drum Site
Pesticides

PESTICIDE	MDL	NJGWQC	BBD-C3	BBD-C5	LB-MW1	LB-MW3	2614909-5
Beta-BHC	0.05	0.2	U	U	R	0.05	0.21 JN
Gamma-BHC	0.05	0.2	U	ָּט	0.056 J	U	U
Aldrin*	0.05	0.002	U	0.15	U	U	U
Endosulfan 1	0.05	0.4	0.11 JN	U	U	U	U
4,4'-DDE	0.1	0.1	Ü	0.30	U	U	0.0071 J**
Endrin	0.1	2.0	0.31 JN	U	0.071 J**	U	U
4,4'-DDD	0.1	0.1	U	0.65	U	U	U
Endrin Aldehyde	0.1	None Given	0.13	Ū	Ü	U	U

Pesticide contamination data illustrated in the above data was limited to data that was equal to or exceeded the Method Detection Limit (MDL), except in the case of monitoring wells 2614909-5 and LB-MW1.

NOTES

** Data did not equal or exceed the MDL

* MDL exceeds NJGWQC

All data indicated in micrograms per liter (ug/L)

Bold denotes data that exceeds NJGWOC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method detection Limit

J - Estimated Value

JN - Presumptive evidence of a compound at an estimated value

R - Rejected Data

TABLE 4 Bayonne Barrel & Drum Site Polychlorinated Biphenyls (PCBs)

START sampled 11 of the 12 monitoring wells on site for PCBs between November 30 - December 2, 1998. Seven species of Arochlors were examined (1016, 1221, 1232, 1242, 1248, 1254, 1260). The only monitoring well that showed any signs of PCB contamination was BBD-C5.

PCB	MDL	NJGWQC	BBD-C5
Arochlor-1254	1.00 ug/L	0.02 ug/L	1.7 ug/L

NOTES

All data indicated in micrograms per liter (ug/L)
Bold denotes data that exceeds NJGWQC
NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)
MDL - Method detection Limit

TABLE 5 **Bayonne Barrel & Drum Site** Metals

		l .	BBD-C1	Τ	BBD-C3		BBD-C4	Т	BBD-C5	L	_B-MW1		LB-MW2	_	WELL-B		LB-MW3	١	WELL-A		MW-29WA	26149	09-5	2	614920
			START	$\neg \top$	START		START	T	START	T	START		START		START		START		START		START	STA	RT	П	START
METALS	IDL	NJGWQC	12/02/98		12/01/98		11/30/98		12/01/98	I	12/02/98		11/30/98		11/30/98		12/02/98	Ī	11/30/98		12/01/98	12/02	2/98	1	2/02/98
								T		Т								Ī							
Aluminum	22.1	<u> </u>	123	BE						3 4	3.3	В	286		87.7	В	22.1 l	J	37.9 E	3	267	22.1		22	
Antimony		2	1.7	U 4	.5	B	1.7 L	J		3 1		U	17	Ú	1.7	U	45.1 E	3	1.7 l		5.9 B	1.7	U	1.	7 U
Arsenic*		0.02	17.2]1	5.4		21.7	3	.3 E	3 4	.2	В	8.7	В	2.8	В	5 E	3]	3.8 E	3	22.1	9.4	В	7.	6 B
Barium	0.4	2,000	125	B 2	217		288	1	64 E	3 4	34		130	В	104	В	1.46 E	3	330		1300	1590		34	17
Beryllium*	0.2	0.008		UO	.22	В	0 ,2 L	J).2 L	10	.2	U	0.2	U	0.2	U	0.2 l	IJ	0.2 (_	D.2 U	0.2		D.	
Cadmium	1.0	4		B 1		В	3,7 E			丌		В	1	U		В	1.7 E	3	1.3 E	3		1.3	В		
Calcium	_	None Given	216,000	[€	4,200		286,000	E	1,700	1	26,000		76,400		112,000		58,100	7	118,000		76,000	131,00	00	23	39,000
Chromium	0.6	100	18.4	2				3 4	.6 E	3 1	.2	В	7.9	В				3	6.3 E	3	19.6	4.9	В		В
Cobalt	0.4	None Given	6.2	B 4	.3	В	1.3 B	3	1.2 E	3 7	.6	В	1.2	В	D.41	В	2.9	3 (D.6 E	W	115 J	0,93	В	1.	
Copper	8.0	1,000	1.4	B 1	0.7	В	1.7 E	3 8	1,6 E	3 1	.2	В	3.2	В	1,1	В	8.3 E	3	2.2 E	3	27 <u>.</u> 3 J	1.3	В	D.	95 B
iron	8.5		29,400	1	270		62,400	9	02	1	1,000		14,300		11,600		804		7910		40,600	23,900)	47	,000
Lead				B 1		В	1.1 B	3 2	.1 B	3 1	.4	В	6.5	J	2.4	В	D.7 l	J).7 l	J	264	3,3		0.	7 U
Magnesium		None Given	38,400	9	3,500		40,300	1	1,400	1	6,800		33,300		47,200		10,400		37,500		8880	41,500)	37	,200
Manganese	0.2	50	6800	8	350		2460	1	40	9	90		1060		1250		130		922		613	225		67	79
Mercury				UO		U		JC	.37	þ	.1	U		-		U	0.1 l	Л).1 L	J	0.13 B	0.1		D.	
Nickel			17.3	B 8		В	15.5 B	7	'.5 B	3 1	.4	В	6	В	2	В	7.4 E	3	12.1 E	3	541	34.9	В	11	.7 B
Potassium			38,200		5,200	J	38,200 J	7	'460 J	1	0,500	J	73,100		73,900	J	6580 J	ı	52,800 J		4530 B	31,400)]	53	3,400 J
Selenium			3:3	B 3	.3	В	5	2	.4 L	12	.4	U	2.4	S	2.4	C	2.4 l	IJ	2.4 L	J	2,4 U	2.4	Ü	3.	
Silver	0.4		0.40	UO	.40	U	0.4 U	J	.4 L	<i>i</i> D	.4	U	0.4	S	0.4	U	D.4 L	IJ).4 L	J	0.82 B	0.4	Ü	D.	4 U
Sodium	128	50,000	145,000		1,010,000		123,000	1	14,000	1	63,000		315,000		443,000		103,000		568,000		41,000	50,400)	63	3,500
Thallium*	2.9	0.5	5.6	B 5	.1	В	5.1 B	3 2	.9 U	J 2	.9	U				כ	3.8 E	3	2.9 L	J	2.9 U	2.9		2.	
Vanadium	0.4	None Given		B 5	.3	В	3.1 B	2	. .9 8	1	.6	В	3.7	В	4.2	В	2.3 E	3	5.8 E	3	2.9 B	2.4		3.	
Zinc	1.5	5,000	1.5	U 1	.5	U)	5 B	1	0.6 B	3, 1	.5	U	50.6	J	8.5	В	9.5 E	3	1.5 L	J	3570	1.5	U	1.	5 U

NOTES

*IDL exceeds NJGWQC All data reported in micrograms per liter (ug/L) WELL-B is the duplicate sample of LB-MW2 Bold data denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96) CRDL - Contract Required Detection Limit IDL - Instrument Detection Limit (for START's sample analysis) B - Between the IDL and CRDL

J - Estimated Value

U - Non-Detected Compound ND - Not-Detected NS - Not Sampled

TABLE 6
Bayonne Barrel & Drum Site
Wet Chemistry Parameters

	NJGWQC	MDL	LB-MW1	LB-MW2	WELL-B	LB-MW3	BBD-C1	BBD-C3	BBD-C4	BBD-C5
WET CHEMISTRY					WLLL-D	CO-WVO	DDD-C1	BBU-03	DDU-C4	<u> </u>
Hardness	250,000	3000	304.000*	E00 0000	F22 000++	204 0004				
Ammonia	500	100	2520	506,000** 18.900*	533,000**	201,000*	746,000**	590,000**	951,000**	243,000*
Total Dissolved Solids	500,000	10,000	B26.000	1,600,000 J	16,600	4680	24,000	5190	22,400*	7230
Total Petroleum HC	None Noticable	2500	BRL	BRL	1,760,000 J BRL	10,300,000	1,160,000		1,240,000 J	285,000
Oil & Grease	None Noticable	15,000	19,900	BRL	BRL	BRL BRL	BRL	BRL	BRL	4800
Fluoride	2000	100	502	332	307	919	BRL 170	BRL 712	BRL	19,200
Odor (T.O.N.)	3	N/A	128	128	512	N/D	128	N/D	250	176
Color (PCU)	10	5.0 (PQL)	29	48	37	29	29	96	128 52	256
Vitrite	1000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100	155
Vitrate	10000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100	<100 <100

	NJGWQC	MDL	WELL-A	MW-29WA	2614909-5	2614920	RIN-001	RIN-002	RIN-003
WET CHEMISTRY							1411001	144-002	144-003
Hardness	250,000	0000							
	250,000	3000	503,000**	548,000**	657,000**	795,000**	BRL	BRL	BRL
\mmonia	500	100	18,800	31,600*	25,400*	35.900*	BRL	BRL	BRL
Total Dissolved Solids	500,000	10,000	2.070.000 J	660,000	2,320,000	881,000	BRL J	BRL	BRL
otal Petroleum HC	None Noticable	2500	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Oil & Grease	None Noticable	15000	BRL	BRL	BRL	BRL	BRL	BRL	BRL
luoride	2000	100	444	368	513	373	BRL	147	BRL
Odor (T.O.N.)	3	N/A	640	32	128	80	N/D	147	N/D
Color (PCU)	10	5.0 (PQL)	276	29	33		1	1.5	
litrite	1000	1				40	<5	<5	<5
		100 (PQL)	<100	<100	<100	<100	<100	<100	<100
litrate	10000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100

NOTES

All data reported in micrograms per liter (ug/L) except Odor and Color WELL-B is the duplicate sample of LB-MW2
Bold denotes data that exceeds NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method Detection Limit

PQL - Practical Quantitation Limit

T.O.N. - Threshold Odor Number

PCU - Platinum Color Unit

N/A - Not Applicable

N/D - Not Dedected

BRL - Below Reporting Limit

J - Estimated Value

*10 X D/F ; **50 X D/F

BAYONNE BARREL & DRUM SITE NEWARK, NEW JERSEY

REDUCED DATA TABLES HISTORICAL DATA

TABLE 1 Bayonne Barrel & Drum Site Volatile Organic Compounds

HISTORICAL DATA

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, BBD-C4, and BBD-C5 on January 7, 1986. In regards to Priority Pollutant Volatile Organic compounds of significance, the following contamination was found:

	NJGWQC	BBD-C3	BBD-C4	BBD-C5
Bromodichlorometha	0.3	5	ND	ND
Benzene	0.2	ND	28	ND
Toluene	1000	ND	5	150
Chlorobenzene	4	ND	ND	67
Ethylbenzene	700	ND	ND	1060
1,2 & 1,1 Dichloroben	None Given	ND	ND	76

Historical data indicates that Louis Berger & Associates, Inc., examined monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986. In regards to Volatile Organic Compounds of significance, no contamination was detected:

NOTES

*MDL exceeds NJGWQC

**NJGWQC (cis isomer - 10 ug/L; trans isomer - 100 ug/L)

All data reported in micrograms per liter (ug/L)

Well-B is the duplicate sample of LB-MW2. LB-MW2 exhibited no signs of volatile organic contamination Bold denotes data that exceeds NJGWQC

MDL - Method Detection Limit

U - Non-detected compound.

B - Compound detected in the associated Method Blank.

J - Estimated value.

JN - Presumptive evidence of a compound at an estimated value.

R - Rejected compound.

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

TABLE 2 Bayonne Barrel & Drum Site Semi-Volatile Organic Compounds

HISTORICAL DATA

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring well BBD-C4 on January 27, 1986 and found the following Semi-Volatile Organic compound contamination:

	NJGWQC	BBD-C4
Di-n-butylpthalate	None Given	28
Napthalene	None Given	14

Historical data indicates that Louis Berger & Associates, Inc., examined monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986. The following Semi-Volatile Organic compounds were found:

	NJGWQC	LB-MW1	LB-MW3
Methyl Benzene	None Given	7	ND
2,4 Dimethylphenol	100	ND	21.9
Acenapthene	400	ND	2.3

NOTES

* MDL exceeds NJGWQC All data reported in micrograms per liter (ug/L) Bold denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method Detection Limit

U - Non-detected compound.

B - Compound detected in the associated Method Blank.

J - Estimated value.

JN - Presumptive evidence of a compound at an estimated value.

R - Rejected compound.

ND - Not Detected

NA - Not Available For This Constituent As Per NJGWQC

TABLE 3 Bayonne Barrel & Drum Site Pesticides

HISTORICAL DATA

Historical data indicates that Louis Berger & Associates, Inc., sampled monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986 for Priority Pollutant Pesticides. No pesticide contamination was detected during this sampling event. Priority Pollutant Pesticides include Beta-BHC, 4,4'-DDE, 4,4'-DDT, Endosulfan Sulfate, and Endrin Aldehyde.

TABLE 4 Bayonne Barrel & Drum Site Polychlorinated Biphenyls (PCBs)

HISTORICAL DATA

Historical data indicates that Louis Berger & Associates, Inc., sampled monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986, for PCBs. No contamination was detected.

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, and BBD-C5 for PCBs on January 27, 1986. The only monitoring well that showed any signs of PCB contamination was BBD-C5:

PCB	MDL	NJGWQC	BBD-C5
Arochlor - 1254	1.0ug/L	0.02 ug/L	53 ug/L

It is interesting to note that BBD-C5 is located in the former "Oil Storage Area" of the site.

NOTES

All data indicated in micrograms per liter (ug/L)
Bold denotes data that exceeds NJGWQC
NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)
MDL - Method Detection Limit

TABLE 5 Bayonne Barrel & Drum Site Metals

		LB-MW1	LB-MW2	LB-MW3	BBD-C4
		L. Berger	L. Berger	L. Berger	D. Raviv
METALS	NJGWQC	5/27/86	5/27/86	5/27/86	1/27/86
Aluminum	200	NS	NS	NS	NS
Antimony	2	3.1	2.6	3.1	ND
Arsenic	0.02	2.0	2.0	ND	10.0
Barium	2,000	NS	NS	NS	NS
Beryllium	0.008	ND	ND	ND	ND
Cadmium	4:	0.83	ND	2.5	ND
Calcium	None Given	NS	NS	NS	NS
Chromium	100	1.4	2.39	12	ND
Cobalt	None Given	NS	NS	NS	NS
Copper	1,000	7.8	8.39	7.8	40.0
Iron	300	NS	NS	NS	NS
Lead	5	ND	ND	ND	ND
Magnesium	None Given	NS	NS	NS	NS
Manganese	50	NS	NS	NS	NS
Mercury	2	ND	ND	0.65	ND
Nickel	100	ND	22	15	ND
Potassium	None Given	NS	NS	NS	NS
Selenium	50	ND	ND	ND	ND
Silver	N/A	ND	ND	2.0	30.0
Sodium	50,000	NS	NS	NS	NS
Thallium	0.5	ND	ND	ND	ND
Vanadium	None Given	NS	NS	NS	NS
Zinc	5,000	29	69	71.0	30.0

NOTES

All data reported in micrograms per liter (ug/L) WELL-B is the duplicate sample of LB-MW2

Bold data denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

B - Between the IDL and CRDL

J - Estimated Value

U - Non-Detected Compound

ND - Not-Detected

TABLE 6 Bayonne Barrel & Drum Site Wet Chemistry Parameters

HISTORICAL DATA

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, and BBD-C5 for Total Petroleum Hydrocarbons (TPH) on January 7, 1986. All four monitoring wells showed TPH contamination, although the field blank did as well.

Dan Raviv	NJGWQC	BBD-C1	BBD-C2	BBD-C3	BBD-C5	Field Blank
Total Petroleum HC	None Noticable	2800	3700	4800	2,000,000	1800
	·					

NOTES

All data reported in micrograms per liter (ug/L) except Odor and Color Bold denotes data that exceeds NJGWQC NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

BAYONNE BARREL & DRUM SITE NEWARK, NEW JERSEY

REDUCED DATA TABLES OFF-SITE DATA

Bayonne Barrel & Drum Site

Volatile Organic Compounds

Historical data indicates that Wehran Engineers & Scientists examined monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05 on June 21, 1988. In regards to Volatile Organic Compounds of significance, the only contaminant detected above the analytical detection limit was 1,2 Dichloroethene (total).

	NJGWQC	MW-02	MW-03	MW-04
1,2 Dichloroethene (total)	10**	27000	6	9

Semi-Volatile Organic Compounds

In regards to Semi-Volatile Organic compounds, none were detected above the analytical detection limit.

Pesticides and PCBs

In regards to Pesticides and PCBs, none were detected above the analytical detection limit.

Metals

In regards to Metals, the following contaminates were found.

		MW-01	MW-02	MW-03	MW-04	MW-05
		Wehran	Wehran	Wehran	Wehran	Wehran
METALS	NJGWQC	6/21/88	6/21/88	6/21/88	6/21/88	6/21/88
Arsenic	0.02	3220	nd	nd	nd	nd
Barlum	2000	nd	237	404	nd	294
Cadmium	4	nd	nd	nd	nd	nd
Chromium	100	nd	nd	nd	nd	nd
Copper	1000	nd	nd	nd	nd	nd
Iron	300	44,700	1480	30,200	20,900	19,400
Lead	5	nd	nd	nd	nd	nd
Manganese	50	3920	278	2430	5050	1360
Mercury	2	nd	nd	0.2	nd	0.2
Selenium	50	nd	nd	nd	nd	nd
Silver	N/A	nd	nd	nd	nd	nd
Sodium	50,000	33,400	68,700	118,000	32,300	182,000
Zinc	5000	115	83	nd	32	34

Wet Chemistry Parameters

In regards to Wet Chemistry Parameters, the following contaminates were found.

		MW-01	MW-02	MW-03	MW-04	MW-05
		Wehran	Wehran	Wehran	Wehran	Wehran
Wet Chemistry Parameters	NJGWQC	6/21/88	6/21/88	6/21/88	6/21/88	6/21/88
Ammonia	500	2290	2890	34,900	21,800	41,900
Total Dissolved Solids	500,000	1,370,000	693,000	1,462,000	1,230,000	1,889,000
Total Petroleum HC	None Noticable	19,100	17,300	10,000	17,800	17,400

*MDL exceeds NJGWQC

**NJGWQC (cis isomer - 10ug/L; trans isomer - 100ug/L)

All data reported in micrograms per liter (ug/L)

Bold denotes data that exceeds NJGWQC

BAYONNE BARREL & DRUM SITE NEWARK, NEW JERSEY

REDUCED DATA TABLES START, HISTORICAL, AND OFF-SITE DATA

TABLE 1 Bayonne Barrel & Drum Site Volatile Organic Compounds

Monitoring Well ID			LB-MW1	2614909-5	BBD-C3	BBD-C5	WELL A	WELL B
Sample Date			12/02/98	12/02/98	12/01/98	12/02/98	11/30/98	11/30/98
	MDL	NJGWQC				 		
Acetone	10	700	UJ	UJ	ÚJ	9 J	53 J	UJ
Bromodichloromethane	10	0.3*	U	U	U	6 J	U	11
Benzene	10	0.2*	7 J	9 J	4 J	26	16	9.1
4-Methyl-2-Pentanone	10	400	U	U	U	Ti Ti	120 J	11
Chlorobenzene	10	4*	U	2 J	U	38	11	i ii
Ethylbenzene	10	700	68	7.1	- u	6J	21	
Styrene	10	100	U	Ü	- ii	11	11	111
Total Xylenes	10	40	25	19	1 J	44	39	

Volatile Organic compound contamination data illustrated in the above table was limited to data that was equal to or exceeded the Method Detection Limit (MDL), except where the MDL exceeded the NJGWQC.

HISTORICAL DATA

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, BBD-C4, and BBD-C5 on January 7, 1986. In regards to Priority Pollutant Volatile Organic compounds of significance, the following contamination was found:

	NJGWQC	BBD-C3	BBD-C4	BBD-C5
Bromodichloromethane	0.3	5	ND	ND
Benzene	0.2	ND	28	ND
Toluene	1000	ND	5	150
Chlorobenzene	4	ND	ND	67
Ethylbenzene	700	ND	ND	1060
1,2 & 1,1 Dichlorobenzene	None Given	ND	ND	76

Historical data indicates that Louis Berger & Associates, Inc., examined monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986. In regards to Volatile Organic Compounds of significance, no contamination was detected:

Historical data indicates that Wehran Engineers & Scientists examined monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05 on June 21, 1988. In regards to Volatile Organic Compounds of significance, the only contaminant detected above the analytical detection limit was 1,2 Dichloroethene (total).

	NJGWQC	MW-02	MW-03	MW-04
1,2 Dichloroethene (total)	10**	27000	6	9

NOTES

*MDL exceeds NJGWQC

**NJGWQC (cis isomer - 10 ug/L; trans isomer - 100 ug/L)

All data reported in micrograms per liter (ug/L)

Well-B is the duplicate sample of LB-MW2. LB-MW2 exhibited no signs of volatile organic contamination Bold denotes data that exceeds NJGWQC

MDL - Method Detection Limit

U - Non-detected compound.

B - Compound detected in the associated Method Blank.

J - Estimated value.

JN - Presumptive evidence of a compound at an estimated value.

R - Rejected compound.

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

TABLE 2 Bayonne Barrel & Drum Site Semi-Volatile Organic Compounds

		2614904	BBD-C1	BBD-C3	BBD-C5	LB-MW1	WELL A
		12/02/98	12/02/98	12/01/98	12/02/98	12/02/98	11/30/98
MDL	NJGWQC						
10	4000	υ	U	U	U	U	940**
10	None Given	U	U	U	u	U	10000**
10	100	U	U	13	U	U	15000 **
10	None Given	25	U	U	17	3900 **	38
10	None Given	33	Ú	u	15	850 **	U
10	400	2 J	u	U			1.1
10	None Given	U	U	U	u		Ü
10	300	U	Ú	U	Ü	64	Ü
10	NA	U	U	U	2 J	73**	Ü
10	2000	U	U	U	U	11	U
10	3*	U	1.J	U	 	U	Ü
	10 10 10 10 10 10 10 10 10	10 4000 10 None Given 10 100 10 None Given 10 None Given 10 None Given 10 400 10 None Given 10 300 10 NA	MDL NJGWQC 10 4000 U 10 None Given U 10 None Given 25 10 None Given 33 10 400 2 J 10 None Given U 10 None Given U	MDL NJGWQC 10 4000 U U 10 None Given U U 10 None Given U U 10 None Given 25 U 10 None Given 33 U 10 400 2 J U 10 None Given U U U	MDL NJGWQC 10 4000 U U U U 10 None Given U U U 10 None Given U U U 10 None Given 25 U U 10 None Given 33 U U 10 400 2 J U U 10 None Given U U U U U 10 NA U U U U	MDL NJGWQC 12/02/98 12/02/98 12/01/98 12/02/98 10 4000 U U U U 10 None Given U U U U 10 100 U U U U T 10 None Given 25 U U U 17 10 None Given 33 U U U 25 10 400 2 J U U 2 J 10 None Given U U U U U 10 300 U U U U U U 10 NA U U U U U U U 10 2000 U<	MDL NJGWQC 10 4000 U U U U U U U U U U U U U U U U U

**- DF=50

Semi-Volatile Organic compound contamination data illustrated in the above table was limited to data that was equal to or exceeded the Method Detection Limit (MDL), except where the MDL exceeded the NJGWQC.

HISTORICAL DATA

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring well BBD-C4 on January 27, 1986 and found the following Semi-Volatile Organic compound contamination:

	NJGWQC	BBD-C4
Di-n-butylpthalate	None Given	28
Napthalene	None Given	14

Historical data indicates that Louis Berger & Associates, Inc., examined monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986. The following Semi-Volatile Organic compounds were found:

	NJGWQC	LB-MW1	LB-MW3
Methyl Benzene	None Given	7	ND
2,4 Dimethylphenol	100	ND	21.9
Acenapthene	400	ND	2.3

Historical data indicates that Wehran Engineers & Scientists examined monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05 on June 21, 1986, No Semi-Volatile Organic compounds were detected above the analytical detection limit.

NOTES

* MDL exceeds NJGWQC

All data reported in micrograms per liter (ug/L) Bold denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method Detection Limit

U - Non-detected compound.

B - Compound detected in the associated Method Blank.

J - Estimated value.

JN - Presumptive evidence of a compound at an estimated value.

R - Rejected compound.

ND - Not Detected

NA - Not Available For This Constituent As Per NJGWQC

TABLE 3 Bayonne Barrel & Drum Site Pesticides

PESTICIDE	MDL	NJGWQC	BBD-C3	BBD-C5	LB-MW1	LB-MW3	2614909-5
Beta-BHC	0.05	0.2	U	U	R	0.05	0.21 JN
Gamma-BHC	0.05	0.2	U	U	0.056 J	U	U
Aldrin*	0.05	0.002	U	0.15	U	U	U
Endosulfan 1	0.05	0.4	0.11 JN	U	U	U	U
4,4'-DDE	0.1	0.1	U	0.30	U	U	0.0071 J**
Endrin	0.1	2.0	0.31 Л	U	0.071 J**	U	U
4,4'-DDD	0.1	0.1	U	0.65	U	U	U
Endrin Aldehyde	0.1	None Given	0.13	U	U	U	U

Pesticide contamination data illustrated in the above data was limited to data that was equal to or exceeded the Method Detection Limit (MDL), except in the case of monitoring wells 2614909-5 and LB-MW1.

HISTORICAL DATA

Historical data indicates that Louis Berger & Associates, Inc., sampled monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986 for Priority Pollutant Pesticides. No pesticide contamination was detected during this sampling event. Priority Pollutant Pesticides include Beta-BHC, 4,4'-DDE, 4,4'-DDT, Endosulfan Sulfate, and Endrin Aldehyde.

Historical data indicates that Wehran Engineers & Scientists sampled monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05 on June 21, 1988. No pesticide or herbicide contamination was detected during this sampling event.

NOTES

- ** Data did not equal or exceed the MDL
- * MDL exceeds NJGWQC

All data indicated in micrograms per liter (ug/L)

Bold denotes data that exceeds NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method detection Limit

J - Estimated Value

JN - Presumptive evidence of a compound at an estimated value

R - Rejected Data

TABLE 4 Bayonne Barrel & Drum Site Polychlorinated Biphenyls (PCBs)

START sampled 11 of the 12 monitoring wells on site for PCBs between November 30 – December 2, 1998. Seven species of Arochlors were examined (1016, 1221, 1232, 1242, 1248, 1254, 1260). The only monitoring well that showed any signs of PCB contamination was BBD-C5.

РСВ	MDL	NJGWQC	BBD-C5
Arochlor-1254	1.00 ug/L	0.02 ug/L	1.7 ug/L

HISTORICAL DATA

Historical data indicates that Wehran Engineers & Scientists sampled monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05 on June 2, 1988, for PCBs. No contamination was detected.

Historical data indicates that Louis Berger & Associates, Inc., sampled monitoring wells LB-MW1, LB-MW2, and LB-MW3 on May 27, 1986, for PCBs. No contamination was detected.

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, and BBD-C5 for PCBs on January 7, 1986. The only monitoring well that showed any signs of contamination was BBD-C5.

PCB	MDL	BBD-C5
Arochlor-1254	1.0 ug/L	53 ug/L

It is interesting to note that BBD-C5 is located in the former "Oil Storage Area" of the site.

NOTES

All data indicated in micrograms per liter (ug/L)

Bold denotes data that exceeds NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method detection Limit

TABLE 5A Bayonne Barrel & Drum Site Metals

			BBD-C1		BBD-C3		BBD-C4		BBD-C4	BBD-C	5
			START		START		START		D. Raviv	START	•
METALS	IDL	NJGWQC	12/02/98		12/01/98		11/30/98		01/27/86	12/01/98	3
								1	<u> </u>		
Aluminum	22.1	200	123	В	63.7	В	31.7	В	NS	46.6	В
Antimony	1.7	2	1.7	Ű	4.5	В	1.7	U	ND	50.9	В
Arsenic*	1.7	0.02	17.2		15.4		21.7		10.0	3.3	В
Barium	0.4	2,000	125		217		288		NS	164	В
Beryllium*	0.2	0.008	0.20	U	0.22	В	0.2	U	ND	0.2	U
Cadmium	1.0	4	2.5	В	1.0	В	3.7	В	ND	1.0	U
Calcium	14.6	None Given	216,000		64,200		286,000		NS	61,700	
Chromium	0.6	100	18.4		2.1	В	2.4	В	ND	4.6	В
Cobalt	0.4	None Given	6.2	В	4.3	В	1.3	В	NS	3.2	В
Copper	0.8	1,000	1.4	В	10.7	В	1.7	В	40.0	8.6	В
Iron	8.5	300	29,400		1270		62,400		NS	902	
Lead	0.7	5	2.5	В	1.6	В	1.1	В	ND	2.1	В
Magnesium	7.9	None Given	38,400		93,500		40,300	Ī	NS	11,400	
Manganese	0.2	50	6800		8350		2460		NS	140	
Mercury	0.1	2	0.10	U	0.10	U	0.1	U	ND	0.37	
Nickel	0.7	100	17.3	В	8.7	В	15.5	В	ND	7.5	В
Potassium	25.9	None Given	38,200	J	65,200	J	38,200	J	NS	7460	J
Selenium	2.4	50	3.3	В	3.3	В	5		ND	2.4	U
Silver	0.4	N/A	0.40	U	0.40	U	0.4	U	30.0	0.4	U
Sodium	128	50,000	145,000		1,010,000	-	123,000		NS	114,000	
Thallium*	2.9	0.5	5.6	В	5.1	В	5.1	В	ND	2.9	U
Vanadium	0.4	None Given	1.8		5.3	В	3.1	В	NS	2.9	В
Zinc	1.5	5,000	1.5	Ü	1.5	U	3.1 5	В	30.0	10.6	В

NOTES

*IDL exceeds NJGWQC

All data reported in micrograms per liter (ug/L) WELL-B is the duplicate sample of LB-MW2 Bold data denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

CRDL - Contract Required Detection Limit

IDL - Instrument Detection Limit (for START's sample analysis)

B - Between the IDL and CRDL

J - Estimated Value

U - Non-Detected Compound

ND - Not-Detected

TABLE 5B Bayonne Barrel & Drum Site Metals

		2	WELL-A		MW-29WA		2614909-5		2614920	į	RIN-001		RIN-002	,	RIN-003	
			START		START		START		START		START		START		START	
METALS	IDL	NJGWQC	11/30/98		12/01/98		12/02/98		12/02/98		11/30/98		12/01/98		12/02/98	
Aluminum	22.1	200	37.9	В	202		00.4		00.4		00.4	U	22.4	11	00.4	
Antimony	1.7	2	1.7		267 5.9		22.1		22.1		22.1		22.1		22.1	U
				ñ			1.7		1.7		1.7	U	1.7		1.7	
Arsenic*	1.7	0.02	3.8	В	22.1				7.6	В					1.7	U
Barium	0.4	2,000	330		1300		1590		347		0.42				1.1	В
Beryllium*	0.2	0.008	0.2	U	0,2				0.2		0.2				0.2	U
Cadmium	1.0	4	1.3	В	4,7	В			2.9	В		U		U	1	U
Calcium	14.6		118,000		76,000		131,000		239,000		14.6	Ų	10 110		55.7	В
Chromium	0.6	100	6.3	В	19.6		4.9	В	3	В	1,5		0.94		1.5	В
Cobalt	0.4	None Given	0.6	В	115	J	0.93	В	1.6	В	0.82	В	0.75	В	1.6	В
Copper	8.0	1,000	2.2	В	27.3	J	1.3	В	0.95	В	2	В	0.8	Ū	1.1	В
Iron	8.5	300	7910		40,600		23,900		47,000		56.2	В	19.7	В	54.8	В
Lead	0.7	5	0.7	U	264		3.3		0.7	U	0.7	U	1.1	В	1.7	В
Magnesium	7.9	None Given	37,500		8880		41,500		37,200		26	В	21.9	В	28.2	В
Manganese	0.2	50	922		613		225		679		3.7		2.6	В	3.1	В
Mercury	0.1	2	0.1	U	0.13	В	0.1	U	0.1	U	0.1		0.1		0.1	U
Nickel	0.7	100	12.1	В	541		34.9	В	11.7		1.5	В	1.4		5.1	В
Potassium	25.9	None Given	62,800	J	4530	В	31,400	j	53,400		25.9	Ū	25.9		25.9	U
Selenium		50	2.4	Ü	2.4				3.5		2.4		2.4		2.4	U
Silver	0.4	N/A	0.4						0.4		0.4		0.4		0.4	U
Sodium	128	50,000	568,000		41,000		50,400		63,500		435		L		301	В
Thallium*			2.9	U	2.9				2.9		2.9		2.9		2.9	U
Vanadium	0.4		5.8	В					3.3		0.4				0.4	Ū
Zinc			1.5		3570				1.5		1.5				1.5	Ū

NOTES:

*IDL exceeds NJGWQC

All data reported in micrograms per liter (ug/L) WELL-B is the duplicate sample of LB-MW2 Bold data denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96) CRDL - Contract Required Detection Limit

IDL - Instrument Detection Limit (for START's sample analysis)

B - Between the IDL and CRDL

J - Estimated Value

U - Non-Detected Compound

ND - Not-Detected

TABLE 5C Bayonne Barrel & Drum Site Metals

			LB-MW1		LB-MW1	Ti	LB-MW2	LB-MW2	LB-MW2 WELL-B	LB-MW2 WELL-B
			START		L. Berger	Ì	START	START	START START	START START
TALS	IDL	NJGWQC	12/02/98		5/27/86	11.	/30/98	/30/98	/30/98 11/30/98	/30/98 11/30/98
uminum	22.4	200	42.2	_	NO	000			07.7	077
		200	1		NS	286			87.7	
ntimony	1.7	2	1.3.7.		3.1	1.7	_	_	J 1.7	
rsenic*		0.02		В	2.0	8.7	В			
arium		2,000	434		NS	130	В	J	104	
eryllium*		0.008			ND	0.20		4	0.20	
Cadmium		4	1	В	0.83	1.0	U		1.2	
Calcium		None Given	126,000		NS	76,400			112,000	
Chromium	0.6	100		В	1.4	7.9	В			
Cobalt	0.4	None Given	<u> </u>		NS	1.2	В	ľ	0.41	0.41 B
Copper	0.8	1,000		В	7.8	3.2	В	ľ	1.1	1.1 B
ron		300	11,000	_	NS	14,300		1	1,600	1,600
_ead		5	1	В	ND	6.5	J	2.4		BJ
Magnesium		None Given	16,800		NS	33,300		47,2	00	00
Manganese		50	990		NS	1060		1250		
Mercury		2	0.10	U	ND	0.10	U	0.10		U
Nickel	0.7	100	1.4	В	ND	6.0	В	2.0	_	В
Potassium		None Given	10,500	J	NS	73,100		73,900		J
Selenium		50	2.4	U	ND	2.4	U	2.4	_	U
Silver	0.4	N/A	0.4	U	ND	0.40		0.40	_	U
Sodium		50,000	163,000		NS	315,000		443,000	_	
Thallium*	2.9	0.5	2.9	U	ND	2.9	U	2.9		U
Vanadium		None Given			NS	3.7	В	4.2		В
Zinc	1.5	5,000	1.5	U	29	50.6	J	8.5	•	BJ

NOTES

*IDL exceeds NJGWQC

All data reported in micrograms per liter (ug/L) WELL-B is the duplicate sample of LB-MW2 Bold data denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

CRDL - Contract Required Detection Limit

IDL - Instrument Detection Limit (for START's sample analysis)

B - Between the IDL and CRDL

J - Estimated Value

U - Non-Detected Compound

ND - Not-Detected

TABLE 5D Bayonne Barrel & Drum Site Metals

		MW-01	MW-02	MW-03	MW-04	MW-05
		Wehran	Wehran	Wehran	Wehran	Wehran
METALS	NJGWQC	06/21/88	06/21/88	06/21/88	06/21/88	06/21/88
Arsenic	0.02	3220	nd	nd	nd	nd
Barium	2,000	nd .	237	404	nd	294
Cadmium	4	nd	nd	nd	nd	nd
Chromium	100	nd	nd	nd	nd	nd
Copper	1,000	nd .	nd	nd	nd	ńd
Iron	300	44,700	1480	30,200	20,900	19,400
Lead	5	nd	nd	nd	nd	nd
Manganese	50	3920	278	2430	5050	1360
Mercury	2	nd	nd	0.2	nd	0.2
Selenium	50	nd	nd	nd	nd	nd
Silver	N/A	nd	nd	nd	nd	nd
Sodium	50,000	33,400	68,700	118,000	32,300	182,000
Zinc	5,000	115	83	nd	32	34

NOTES

All data reported in micrograms per liter (ug/L)
Bold data denotes data that exceeds the NJGWQC

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96) nd - Not-Detected

TABLE 6 Bayonne Barrel & Drum Site Wet Chemistry Parameters

	NJGWQC	MDL	LB-MW1	LB-MW2	WELL-B	LB-MW3	BBD-C1	BBD-C3	BBD-C4	BBD-C5
WET CHEMISTRY										
Hardness	250,000	3000	304,000*	506,000**	533,000**	201,000*	746.000**	590,000**	951,000**	243.000*
Ammonia	500	100	2520	18,900*	16,600	4680	24.000	5190	22,400*	7230
Total Dissolved Solids	500,000	10,000	B26,000		1,760,000 J	10.300.000	1,160,000		1.240,000 J	285,000
Total Petroleum HC	None Noticable	2500	BRL	BRL	BRL	BRL	BRL	BRL	BRL	4800
Oil & Grease	None Noticable	15,000	19,900	BRL	BRL	BRL	BRL	BRL	BRL	19,200
Fluoride	2000	100	502	332	307	919	170	712	250	176
Odor (T.O.N.)	3	N/A	128	128	512	N/D	128	N/D	128	256
Color (PCU)	10	5.0 (PQL)	29	48	37	29	29	96	52	155
Nitrite	1000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100	<100
Nitrate	10000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100	<100

	NJGWQC	MDL	WELL-A	MW-29WA	2614909-5	2614920	RIN-001	RIN-002	RIN-003
WET CHEMISTRY									
Hardness	250,000	3000	503,000**	548,000**	657,000**	795.000**	BRL	BRL	BRL
Ammonia	500	100	18,800	31,600*	25,400*	35,900*	BRL	BRL	BRL
Total Dissolved Solids	500,000	10,000	2,070,000 J	660,000	2,320,000	881,000	BRL J	BRL	BRL
Total Petroleum HC	None Noticable	2500	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Oil & Grease	None Noticable	15000	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Fluoride	2000	100	444	368	513	373	BRL	147	BRL
Odor (T.O.N.)	3	N/A	640	32	128	80	N/D	1	N/D
Color (PCU)	10	5.0 (PQL)	276	29	33	40	<5	<5	<5
Vitrite	1000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100
Vitrate	10000	100 (PQL)	<100	<100	<100	<100	<100	<100	<100

HISTORICAL DATA

Historical data indicates that Dan Raviv Associates, Inc., examined monitoring wells BBD-C1, BBD-C2, BBD-C3, and BBD-C5 for Total Petroleum Hydrocarbons (TPH) on January 7, 1986. All four monitoring wells showed TPH contamination, although the field blank did as well.

Dan Raviv	NJGWQC	BBD-C1	BBD-C2	BBD-C3	BBD-C5	Field Blank
Total Petroleum HC	None Noticable	2800	3700	4800	2,000,000	1800

Historical data Indicates that Wehran Engineers & Scientists examined monitoring wells MW-01, MW-02, MW-03, MW-04, and MW-05 on June 21, 1988, for various wet chemistry parameters including Ammonia, TDS, and TPH.

Wehran Engineers	NJGWQC	MW-01	MW-02	MW-03	MW-04	MW-05
Ammonia	500	2290	2890	34,900	21,800	41,900
Total Dissolved Solids	500,000	1,370,000	693,000	1,462,000	1,230,000	1,889,000
Total Petroleum HC	None Noticable	19,100	17,300	10,000	17,800	17,400

NOTES

All data reported in micrograms per liter (ug/L) except Odor and Color WELL-B is the duplicate sample of LB-MW2
Bold denotes data that exceeds NJGWQC

DOIG GELICIES GAIG HINT EXCESOR MICHAEL

NJGWQC - New Jersey Groundwater Quality Criteria (N.J.A.C. 7:9-6, 8/96)

MDL - Method Detection Limit

PQL - Practical Quantitation Limit T.O.N. - Threshold Odor Number

PCU - Platinum Color Unit

N/A - Not Applicable

N/D - Not Dedected

BRL - Below Reporting Limit
J - Estimated Value

*10 X D/F ; **50 X D/F